How Groups of Cells Cooperate to Build Organs and Organisms

Understanding biology’s software—the rules that enable great plasticity in how cell collectives generate reliable anatomies—is key to advancing tissue engineering and regenerative medicine.

Written byMichael Levin
| 24 min read

Register for free to listen to this article
Listen with Speechify
0:00
24:00
Share

ABOVE: MODIFIED FROM © istock.com, LUCKYSTEP48

Efforts to use regenerative medicine—which seeks to address ailments as diverse as birth defects, traumatic injury, aging, degenerative disease, and the disorganized growth of cancer—would be greatly aided by solving one fundamental puzzle: How do cellular collectives orchestrate the building of complex, three-dimensional structures?

While genomes predictably encode the proteins present in cells, a simple molecular parts list does not tell us enough about the anatomical layout or regenerative potential of the body that the cells will work to construct. Genomes are not a blueprint for anatomy, and genome editing is fundamentally limited by the fact that it’s very hard to infer which genes to tweak, and how, to achieve desired complex anatomical outcomes. Similarly, stem cells generate the building blocks of organs, but the ability to organize specific cell types into a working human hand or eye has been and will be beyond ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

September 2020

Human Paths

Archaeology and genetics are starting to resolve humanity’s origin and spread

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH
Beckman Logo

Beckman Coulter Life Sciences Introduces the Biomek i3 Benchtop Liquid Handler, a Small but Mighty Addition to its Portfolio of Automated Workstations