Fifty Years with Double-Stranded RNA

Fifty Years with Double-Stranded RNA Courtesy of Alexander Rich The scientist who discovered hybridization and the "other" double helix describes what it meant to biology. By Alexander Rich ARTICLE EXTRAS An interactive look at original documents with commentary: The discovery of the dsRNA helix, 1956 Predictions on the regulatory potential of dsRNA, 1961 RNA Timeline: A History in Hybridization and StructurePodcast: Alex Rich discusses th

Written byAlexander Rich
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

Fifty Years with Double-Stranded RNA

The scientist who discovered hybridization and the "other" double helix describes what it meant to biology.
By Alexander Rich

Fifty-two years ago I was venturing to the basement of Cal Tech chemistry with some regularity, looking at nucleic-acid diffraction data using the school's admittedly primitive fiber X-ray facilities. My postdoctoral advisor at the time, Linus Pauling, had been interested in finding the structure of DNA, but Watson and Crick had largely eclipsed that effort. Now, collaborating with Jim Watson, who had returned from Cambridge, I was taken with a challenge put forth in his famed double-helix manuscript.1

In their 1953 publication on the DNA double helix, Watson and Crick stated: "It is probably impossible to form this structure with ribose, instead of deoxyribose." The reason: The 2' hydroxyl on each ribose would create a Van der Waals clash. But the question remained. Could the molecule ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery