Finding Phenotypes

Genes shared across species that produce different phenotypes – deafness in humans and directional growth in plants – may reveal new models of disease.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

CANCER OR MORE BOYS: A mutated form of the human gene for breast cancer is also responsible for producing more male progeny in C. elegans worms, pictured here.PHOTO RESEARCHERS, INC., SINCLAIR STAMMERS

K.L. McGary et al., “Systematic discovery of nonobvious human disease models through orthologous phenotypes,” PNAS, 107:6544-49, 2010.

Edward Marcotte, of the University of Texas at Austin, was always interested in how the same groups of conserved genes could be linked to such different traits in different organisms. For example, mutated forms of the BRCA1 gene, which are associated with breast cancer in humans, are also responsible for a higher frequency of male progeny in C. elegans. Searching for common gene networks or systems across very different species, Marcotte and his colleagues uncovered surprising relationships—coined phenologs—that could help locate new disease-related genes or be used to screen therapeutic compounds.

Using a database of gene-phenotype relationships, as well as raw literature searches, the group found 3,755 phenologs ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Edyta Zielinska

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo