Floppy Cells

Cell division in L-forms—bacterial variants that have no cell walls—could shed light on how primitive life forms replicated.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

PINCH HITTING: When a walled Bacillus subtilis cell divides, complicated cellular machinery segregates its contents and builds a new peptidoglycan wall across its center (1) before the bacterium splits into two daughter cells (2). L-form bacteria, which don’t have cell walls, dispense with the normal replication methods, at least in some cases. Instead, L-forms produce extra cell membrane and extra chromosomes and become large and irregularly shaped (3). Biomechanical forces cause smaller cells to break off through blebbing (4) or tubulation (5).LUCY READING-IKKANDA

The paper

R. Mercier et al., “Excess membrane synthesis drives a primitive mode of cell proliferation,” Cell, 152:997-1007, 2013.

Bacterial cells usually divide in an orderly fashion, building new cell walls across their centers before they separate. But recent research suggests that cell division for bacterial L-forms, which lack a cell wall, is a haphazard affair—possibly more reminiscent of primitive cell replication than of modern-day bacterial reproduction.

Many bacterial species, ranging from the harmless soil bacterium Bacillus subtilis to the pathogenic Listeria monocytogenes, have L-forms. They are pared-down versions of ordinary cells of their species, containing nearly the same genes but lacking the exterior peptidoglycan coating that is a defining bacterial trait.

Jeff Errington, a cell and molecular biologist at Newcastle University in the U.K., ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH