Force-detection Microscopy Takes Big Steps Forward

A SINGLE-SPIN MRFM EXPERIMENT© 2004 Nature Publishing Groupcan probe spins as deep as 100 nm below the sample surface. The magnetic tip at the end of an ultrasensitive silicon cantilever is positioned 125 nm above a polished SiO2 sample containing a low density of unpaired electron spins. The resonant slice represents those points in the sample where the field from the magnetic tip (plus an external field) matches the condition for magnetic resonance. (Reprinted with permission from Nature,

Written byEugene Russo
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

© 2004 Nature Publishing Group

can probe spins as deep as 100 nm below the sample surface. The magnetic tip at the end of an ultrasensitive silicon cantilever is positioned 125 nm above a polished SiO2 sample containing a low density of unpaired electron spins. The resonant slice represents those points in the sample where the field from the magnetic tip (plus an external field) matches the condition for magnetic resonance. (Reprinted with permission from Nature, 430:329–32, 2004).

Two recent advances in force-detection microscopy may one day revolutionize the science of the very small. One prototype tweaks traditional nuclear magnetic resonance (NMR) techniques; the other represents a step toward viewing single molecules directly in three dimensions.

Conventional NMR and magnetic resonance imaging (MRI) technologies work by detecting small, oscillating magnetic fields that induce a voltage in a nearby coil. Both seek to detect the spins of protons, which act like ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA