Force-detection Microscopy Takes Big Steps Forward

A SINGLE-SPIN MRFM EXPERIMENT© 2004 Nature Publishing Groupcan probe spins as deep as 100 nm below the sample surface. The magnetic tip at the end of an ultrasensitive silicon cantilever is positioned 125 nm above a polished SiO2 sample containing a low density of unpaired electron spins. The resonant slice represents those points in the sample where the field from the magnetic tip (plus an external field) matches the condition for magnetic resonance. (Reprinted with permission from Nature,

Written byEugene Russo
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

© 2004 Nature Publishing Group

can probe spins as deep as 100 nm below the sample surface. The magnetic tip at the end of an ultrasensitive silicon cantilever is positioned 125 nm above a polished SiO2 sample containing a low density of unpaired electron spins. The resonant slice represents those points in the sample where the field from the magnetic tip (plus an external field) matches the condition for magnetic resonance. (Reprinted with permission from Nature, 430:329–32, 2004).

Two recent advances in force-detection microscopy may one day revolutionize the science of the very small. One prototype tweaks traditional nuclear magnetic resonance (NMR) techniques; the other represents a step toward viewing single molecules directly in three dimensions.

Conventional NMR and magnetic resonance imaging (MRI) technologies work by detecting small, oscillating magnetic fields that induce a voltage in a nearby coil. Both seek to detect the spins of protons, which act like ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies