Freshwater Bacteria Might Help Explain the “Methane Paradox”

Certain microbes express genes in a methane-production pathway, offering an explanation for puzzlingly high levels of the gas in some lakes.

Written byKerry Grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ROLLIN’ IN THE DEEP: A view of the Indonesian village of Sorowako from Julia Maresca’s research vessel floating on iron-rich Lake MatanoJULIA MARESCA

Until 2008, a simple molecule—one carbon flanked by four hydrogens, aka methane—had oceanographers scratching their heads. Methane levels are supersaturated on ocean surfaces, meaning they are higher than expected given atmospheric concentrations. Yet, scientists only knew of methanogenesis in anaerobic archaea deep down on the oxygen-depleted ocean floor. The abundance of methane in oxygen-rich surface waters became known as the “methane paradox,” a curiosity with potential implications for global warming given that the greenhouse gas moves easily from supersaturated water into the atmosphere.

But the source of methane underlying the paradox remained unsolved until David Karl at the University of Hawaii and colleagues discovered that laboratory-grown aerobic marine microbes can break down methylphosphonate and produce methane (Nat Geosci, 1:473-78, 2008). Four years later, researchers found ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

December 2016

Traffic Cops

The structure and function of nuclear pores

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems