Freshwater Bacteria Might Help Explain the “Methane Paradox”

Certain microbes express genes in a methane-production pathway, offering an explanation for puzzlingly high levels of the gas in some lakes.

Written byKerry Grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ROLLIN’ IN THE DEEP: A view of the Indonesian village of Sorowako from Julia Maresca’s research vessel floating on iron-rich Lake MatanoJULIA MARESCA

Until 2008, a simple molecule—one carbon flanked by four hydrogens, aka methane—had oceanographers scratching their heads. Methane levels are supersaturated on ocean surfaces, meaning they are higher than expected given atmospheric concentrations. Yet, scientists only knew of methanogenesis in anaerobic archaea deep down on the oxygen-depleted ocean floor. The abundance of methane in oxygen-rich surface waters became known as the “methane paradox,” a curiosity with potential implications for global warming given that the greenhouse gas moves easily from supersaturated water into the atmosphere.

But the source of methane underlying the paradox remained unsolved until David Karl at the University of Hawaii and colleagues discovered that laboratory-grown aerobic marine microbes can break down methylphosphonate and produce methane (Nat Geosci, 1:473-78, 2008). Four years later, researchers found ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

December 2016

Traffic Cops

The structure and function of nuclear pores

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel