Freshwater Bacteria Might Help Explain the “Methane Paradox”

Certain microbes express genes in a methane-production pathway, offering an explanation for puzzlingly high levels of the gas in some lakes.

Written byKerry Grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ROLLIN’ IN THE DEEP: A view of the Indonesian village of Sorowako from Julia Maresca’s research vessel floating on iron-rich Lake MatanoJULIA MARESCA

Until 2008, a simple molecule—one carbon flanked by four hydrogens, aka methane—had oceanographers scratching their heads. Methane levels are supersaturated on ocean surfaces, meaning they are higher than expected given atmospheric concentrations. Yet, scientists only knew of methanogenesis in anaerobic archaea deep down on the oxygen-depleted ocean floor. The abundance of methane in oxygen-rich surface waters became known as the “methane paradox,” a curiosity with potential implications for global warming given that the greenhouse gas moves easily from supersaturated water into the atmosphere.

But the source of methane underlying the paradox remained unsolved until David Karl at the University of Hawaii and colleagues discovered that laboratory-grown aerobic marine microbes can break down methylphosphonate and produce methane (Nat Geosci, 1:473-78, 2008). Four years later, researchers found ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

December 2016

Traffic Cops

The structure and function of nuclear pores

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH