Freshwater Bacteria Might Help Explain the “Methane Paradox”

Certain microbes express genes in a methane-production pathway, offering an explanation for puzzlingly high levels of the gas in some lakes.

kerry grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ROLLIN’ IN THE DEEP: A view of the Indonesian village of Sorowako from Julia Maresca’s research vessel floating on iron-rich Lake MatanoJULIA MARESCA

Until 2008, a simple molecule—one carbon flanked by four hydrogens, aka methane—had oceanographers scratching their heads. Methane levels are supersaturated on ocean surfaces, meaning they are higher than expected given atmospheric concentrations. Yet, scientists only knew of methanogenesis in anaerobic archaea deep down on the oxygen-depleted ocean floor. The abundance of methane in oxygen-rich surface waters became known as the “methane paradox,” a curiosity with potential implications for global warming given that the greenhouse gas moves easily from supersaturated water into the atmosphere.

But the source of methane underlying the paradox remained unsolved until David Karl at the University of Hawaii and colleagues discovered that laboratory-grown aerobic marine microbes can break down methylphosphonate and produce methane (Nat Geosci, 1:473-78, 2008). Four years later, researchers found ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

December 2016

Traffic Cops

The structure and function of nuclear pores

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb