Getting to Know the Genome

A massive project involving hundreds of scientists suggests that very little—if any—of the human genome is truly non-functional.

Written byEd Yong
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

In 2001, the Human Genome Project produced a near-complete readout of the human species’ DNA. But researchers had little idea about how those As, Gs, Cs, and Ts were used, controlled, or organized, much less how they code for a living, breathing human.

That knowledge gap has just got a little smaller. A massive international project called ENCODE, the Encyclopedia of DNA Elements, has cataloged every nucleotide within the genome that does something—which, it turns out, is significantly more than the 1.5 percent of the genome contains actual instructions for making proteins. The research, a 10-year effort by an international team of 442 scientists, shows that the rest of the genome—the non-coding majority—is still rife with “functional elements.”

“The genome is no longer an empty vastness,” said Shyam Prabhakar from the Genome Institute of Singapore, who was not involved in the study. “It is densely packed with peaks and wiggles ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH