Giant Plankton May Help Move Plastic Pollution to Sea Floor

Researchers show that pinkie-size marine organisms can ingest and poop out microplastics, potentially transporting them to the depths.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The inner mucus filter of a giant larvacean, a member of the genus Bathochordaeus© 2017 MBARIPlastic pollution has emerged as a real threat to Earth’s ecosystems, especially in the ocean. But microscopic bits of plastic that swirl near the surface may have a route to deeper layers. Giant larvaceans, members of the marine zooplankton that swim in the upper layers of ocean waters worldwide, may be capable of ingesting microplastic pollution and transporting it to deeper parts of the sea, according to researchers at the Monterey Bay Aquarium Research Institute (MBARI).

“We’re really at the tip of the iceberg in understanding really where these plastics are winding up,” study coauthor and MBARI researcher Kakani Katija tells The Verge.

Katija and her colleagues performed experiments in which they fed plastic particles smaller than sand grains to the giant larvacean Bathochordaeus stygius, a frequent visitor of Monterey Bay. B. stygius, like other giant larvaceans, constructs massive nests made of mucus, which they use to filter about 11 gallons of sea water per hour. When the MBARI team members fed fluorescent microplastic bits to 25 larvaceans, they found that the majority of the planktonic organisms ingested the particles and pooped them out within 12 hours. They published their findings yesterday (August 16) in Science Advances.

When giant larvaceans excrete ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Bob Grant

    From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio