Gravity Determines Cell Size

Researchers show that cells may have evolved to be small because of gravitational forces.

Written byAbby Olena, PhD
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Human oocyteWIKIMEDIA, EKEMIt has long been believed that cells with diameters much bigger than 10 microns—the typical size of most eukaryotic cells—are rare because it is difficult for larger cells to acquire nutrients or expel waste. The oocytes of most animals are much bigger, and they likewise have larger nuclei, which often contain high concentrations of the protein actin. Cell biologists Marina Feric and Clifford Brangwynne of Princeton University in New Jersey have shown that cells are likely small because of gravitational forces and that the extra actin in oocyte nuclei stabilizes the responses of larger cells to gravity. Their work, published in the October issue of Nature Cell Biology, was surprising because cell biologists “really have never, in my experience, worried about gravity—or thought about it,” Brangwynne told The Atlantic.

Brangwynne and Feric injected tiny plastic beads into the germinal vesicles—nuclei—of 1 millimeter oocytes from African clawed frogs (Xenopus laevis). Beads of different radii moved differently within the nuclei—larger particles got stuck more often than smaller ones—which suggested that they were traveling through a network of actin. When the researchers treated the eggs with drugs that disrupt actin or injected them with a factor that decreased actin concentration in the nuclei, plastic beads of all sizes moved similarly. When they disrupted actin and injected metallic beads, these beads and endogenous organelles eventually settled to the bottom of the nucleus. Brangwynne and Feric applied forces to the germinal vesicles and showed that actin polymerized in response. “Gravity becomes really important at a smaller scale than you ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research