Hagfish Slime Cells Tailored to Deter Predation

The Scientist spoke with Chapman University’s Yu Zeng about his lab’s finding that the slime-producing cells of the slippery marine fish vary with the creature’s size, which may be an adaptation to thwart different predators.

Written byChloe Tenn
| 5 min read
Hagfish slime on hands

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: Hagfish slime © ISTOCK.COM, FFENNEMA

Hagfish are notorious for their defensive slime, which can swell from a small secretion to a carload of goo in a fraction of a second. The slime is made up of a winding web of fibrous protein threads that trap the surrounding seawater, thus transforming it into a malicious mucus that suffocates the gills and jaws of attacking predators.

The biology of this slime has long fascinated materials scientists and evolutionary biologists alike, including Yu Zeng, an evolutionary biologist at Chapman University in California. Zeng and his colleagues decided to focus on the gland cells that produce the fish’s slick substance, and in their September 20 paper in Current Biology, they find that these slime cells differ in size and produce differently sized threads depending on the size of the hagfish, with larger hagfish possessing much larger thread-producing cells than would be expected based ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • young woman smiling

    Chloe Tenn is a graduate of North Carolina State University, where she studied neurobiology, English, and forensic science. Fascinated by the intersection of science and society, she has written for organizations such as NC Sea Grant and the Smithsonian. Chloe also works as a freelancer with AZoNetwork, where she ghostwrites content for biotechnology, pharmaceutical, food, energy, and environmental companies. She recently completed her MSc Science Communication from the University of Manchester, where she researched how online communication impacts disease stigma. You can check out more of her work here.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies