Have a HaploCHIP

Searching for common DNA polymorphisms that affect gene regulation in vivo.

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The majority of single nucleotide polymorphisms are found in non-coding DNA but there have been few reliable techniques to predict their functional significance. In an Advanced Online Publication in Nature Genetics, Julian Knight and colleagues at the Wellcome Trust Centre for Human Genetics, Oxford, UK, describe an approach, dubbed HaploCHIP, which uses hapolotype-specific chromatin immunoprecipitation (CHIP) to detect differences in the amount of phosphorylated RNA polymerase II (Pol II) bound to different alleles (Nature Genetics, DOI:10.1038/ng1124,10 March 2003).

Knight et al. tested the HaploCHIP method by studying the imprinted gene SNRPN, encoding the small nuclear ribonucleoprotein polypeptide N. CHIP with antibodies against the phosphorylated Pol II protein could distinguish between transcriptional activation of the two SNRPN alleles. For accurate and sensitive detection of the relative abundance of the two different alleles they used primer extension and MALDI-TOF mass spectrometry. The HaploCHIP approach revealed a correlation between haplotypes and gene expression ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies