How an Invasive Bee Managed to Thrive in Australia

The Asian honeybee should have been crippled by low genetic diversity, but thanks to natural selection it thrived.

Written byBen Andrew Henry
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ANDRZEJ KRAUZEIn the famous case of Darwin’s finches, natural selection acts decisively, elevating a trait in the population, weeding it out, or simply ignoring it. But in actuality, natural selection can sometimes exert a more complicated influence. An unusual pattern of genetic selection turns out to be responsible for the rampant spread of the invasive Asian honeybee (Apis cerana) from Papua New Guinea into Australia, a pattern that Rosalyn Gloag of the University of Sydney and her colleagues have managed to decode.

The first Asian honeybees reached Australian shores in 2007, probably on the mast of a ship or stowed away in a shipping container. The bees made landfall in Cairns, a city on the continent’s northeastern coast, and spread rapidly from there. Bruce White, a retired government apiculture and biosecurity specialist, says that Australian officials who responded to the invasion were ill equipped to contain the bees and did not realize how quickly colonies could disperse. Concerned beekeepers alerted authorities to A. cerana hives that appeared in their yards, but the eradication effort proved futile.

Up until now, the success of A. cerena in Australia has posed something of a biological puzzle. Under the normal rules of evolution, the invasive bees should have been hamstrung by ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

January 2017

Driving Out Disease

Scenarios for the genetic manipulation of mosquito vectors

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH