How an Invasive Bee Managed to Thrive in Australia

The Asian honeybee should have been crippled by low genetic diversity, but thanks to natural selection it thrived.

Written byBen Andrew Henry
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ANDRZEJ KRAUZEIn the famous case of Darwin’s finches, natural selection acts decisively, elevating a trait in the population, weeding it out, or simply ignoring it. But in actuality, natural selection can sometimes exert a more complicated influence. An unusual pattern of genetic selection turns out to be responsible for the rampant spread of the invasive Asian honeybee (Apis cerana) from Papua New Guinea into Australia, a pattern that Rosalyn Gloag of the University of Sydney and her colleagues have managed to decode.

The first Asian honeybees reached Australian shores in 2007, probably on the mast of a ship or stowed away in a shipping container. The bees made landfall in Cairns, a city on the continent’s northeastern coast, and spread rapidly from there. Bruce White, a retired government apiculture and biosecurity specialist, says that Australian officials who responded to the invasion were ill equipped to contain the bees and did not realize how quickly colonies could disperse. Concerned beekeepers alerted authorities to A. cerana hives that appeared in their yards, but the eradication effort proved futile.

Up until now, the success of A. cerena in Australia has posed something of a biological puzzle. Under the normal rules of evolution, the invasive bees should have been hamstrung by ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

January 2017

Driving Out Disease

Scenarios for the genetic manipulation of mosquito vectors

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies