How an Invasive Bee Managed to Thrive in Australia

The Asian honeybee should have been crippled by low genetic diversity, but thanks to natural selection it thrived.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ANDRZEJ KRAUZEIn the famous case of Darwin’s finches, natural selection acts decisively, elevating a trait in the population, weeding it out, or simply ignoring it. But in actuality, natural selection can sometimes exert a more complicated influence. An unusual pattern of genetic selection turns out to be responsible for the rampant spread of the invasive Asian honeybee (Apis cerana) from Papua New Guinea into Australia, a pattern that Rosalyn Gloag of the University of Sydney and her colleagues have managed to decode.

The first Asian honeybees reached Australian shores in 2007, probably on the mast of a ship or stowed away in a shipping container. The bees made landfall in Cairns, a city on the continent’s northeastern coast, and spread rapidly from there. Bruce White, a retired government apiculture and biosecurity specialist, says that Australian officials who responded to the invasion were ill equipped to contain the bees and did not realize how quickly colonies could disperse. Concerned beekeepers alerted authorities to A. cerana hives that appeared in their yards, but the eradication effort proved futile.

Up until now, the success of A. cerena in Australia has posed something of a biological puzzle. Under the normal rules of evolution, the invasive bees should have been hamstrung by ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ben Andrew Henry

    This person does not yet have a bio.

Published In

January 2017

Driving Out Disease

Scenarios for the genetic manipulation of mosquito vectors

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio