How Bacteria Evade the Immune System

Escherichia coli can quickly evolve to resist engulfment by macrophages, scientists have found.

Written byLaasya Samhita
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ISABEL GORDOBacteria exposed to antibiotics rapidly acquire mutations that allow them to develop resistance to the drugs, and this process is fairly well understood. Scientists have now looked at the evolution of bacterial resistance toward live agents: cells of the immune system. In a report published in PLOS Pathogens today (December 12), a team led by Isabel Gordo from the Instituto Gulbenkian de Ciência in Oeiras, Portugal, challenged the common human intestinal bacterium Escherichia coli with mouse macrophages—immune system cells that engulf foreign elements like bacteria—and observed the rapid evolution of mutants capable of escaping capture. The same E. coli mutants could successfully establish infections in mice.

“This work on the development of E. coli macrophage resistance and virulence is important,” wrote James Shapiro, a professor of microbiology at the University of Chicago who was not involved in the work, in an e-mail to The Scientist. “It documents how encounters with mammalian host defense cells can stimulate rapid adaptation in bacteria.”

Although the authors only tested for E. coli virulence for one month, some mutants emerged in as few as four days.

Bacteria have evolved several defences to avoid being internalized by macrophages—sticky outer coverings, formation of filaments and biofilms among them. The evolution of such defences has been studied previously, but not through an evolutionary experiment such as this one performed by Gordo’s team. “I would have thought that the answer ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH