How Bacteria Evade the Immune System

Escherichia coli can quickly evolve to resist engulfment by macrophages, scientists have found.

Written byLaasya Samhita
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ISABEL GORDOBacteria exposed to antibiotics rapidly acquire mutations that allow them to develop resistance to the drugs, and this process is fairly well understood. Scientists have now looked at the evolution of bacterial resistance toward live agents: cells of the immune system. In a report published in PLOS Pathogens today (December 12), a team led by Isabel Gordo from the Instituto Gulbenkian de Ciência in Oeiras, Portugal, challenged the common human intestinal bacterium Escherichia coli with mouse macrophages—immune system cells that engulf foreign elements like bacteria—and observed the rapid evolution of mutants capable of escaping capture. The same E. coli mutants could successfully establish infections in mice.

“This work on the development of E. coli macrophage resistance and virulence is important,” wrote James Shapiro, a professor of microbiology at the University of Chicago who was not involved in the work, in an e-mail to The Scientist. “It documents how encounters with mammalian host defense cells can stimulate rapid adaptation in bacteria.”

Although the authors only tested for E. coli virulence for one month, some mutants emerged in as few as four days.

Bacteria have evolved several defences to avoid being internalized by macrophages—sticky outer coverings, formation of filaments and biofilms among them. The evolution of such defences has been studied previously, but not through an evolutionary experiment such as this one performed by Gordo’s team. “I would have thought that the answer ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies