How Bacteria in Flies Kill Parasitic Wasps

Ribosome-inactivating proteins from symbiotic bacteria leave their hosts unharmed.

Written byShawna Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

wasp laying eggsA female parasitic wasp inserts her ovipositor into a Drosophila larva to lay her egg.MICHAEL MARTIN, REED COLLEGE. COURTESY: NATIONAL SCIENCE FOUNDATIONA strain of the symbiotic Spiroplasma bacteria protects its host fly by producing a toxin that attacks the ribosomes of parasitic wasps, researchers reported July 6 in PLOS Pathogens. The study builds on the finding that another Spiroplasma strain defends against parasitic nematodes in the same way.

Spiroplasma bacteria are thought to live in at least 7 percent of insects, where they are passed down from mother to young, write the researchers in their report. In the lab, Spiroplasma-infected Drosophila have proven more resistant than their uninfected counterparts to pests such as parasitic wasps, which lay eggs in Drosophila larvae.

Until recently, scientists had few clues as to how the bacterial protection worked. Then, in 2013, a research group led by Steve Perlman of the University of Victoria found that Spiroplasma in one Drosophila species make a ribosome-inactivating protein that is toxic to would-be parasitic nematodes. Other known ribosome-inactivating proteins, fittingly abbreviated as RIPs, include the deadly ricin made famous by Breaking Bad and the Shiga toxin deployed by pathogenic E. coli ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery