How Bacteria in Flies Kill Parasitic Wasps

Ribosome-inactivating proteins from symbiotic bacteria leave their hosts unharmed.

Written byShawna Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

wasp laying eggsA female parasitic wasp inserts her ovipositor into a Drosophila larva to lay her egg.MICHAEL MARTIN, REED COLLEGE. COURTESY: NATIONAL SCIENCE FOUNDATIONA strain of the symbiotic Spiroplasma bacteria protects its host fly by producing a toxin that attacks the ribosomes of parasitic wasps, researchers reported July 6 in PLOS Pathogens. The study builds on the finding that another Spiroplasma strain defends against parasitic nematodes in the same way.

Spiroplasma bacteria are thought to live in at least 7 percent of insects, where they are passed down from mother to young, write the researchers in their report. In the lab, Spiroplasma-infected Drosophila have proven more resistant than their uninfected counterparts to pests such as parasitic wasps, which lay eggs in Drosophila larvae.

Until recently, scientists had few clues as to how the bacterial protection worked. Then, in 2013, a research group led by Steve Perlman of the University of Victoria found that Spiroplasma in one Drosophila species make a ribosome-inactivating protein that is toxic to would-be parasitic nematodes. Other known ribosome-inactivating proteins, fittingly abbreviated as RIPs, include the deadly ricin made famous by Breaking Bad and the Shiga toxin deployed by pathogenic E. coli ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform