How Lyme Disease-Causing Bacteria Traverse Blood Vessels

Borrelia burgdorferi move around the body by clinging to the inside of blood vessels with “catch bonds.”

Written byBen Andrew Henry
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

PUBLIC DOMAIN IMAGES, JAMICE HANEY CARR, CLAUDIA MOLINS

The bacterium that causes Lyme disease spreads aggressively throughout the body, but little is known about how it so effectively moves. In a paper published last week (August 25) in Cell Reports, researchers from the University of Toronto show that the bacterium, Borrelia burgdorferi, rapidly grabs and releases its host’s blood vessel-lining endothelial cells with a protein that acts like a grappling hook. “This mechanism is how the bacteria can overcome the fast flow of blood and avoid getting swept away,” study coauthor Rhodaba Ebady of Toronto told Scientific American.

B. burgdorferi enters the body through a tick bite, usually leaving a distinctive bull’s-eye rash. Symptoms include fever, headache, and fatigue, and—if left untreated—the infection can cause joint pain, heart problems, and nerve damage, according ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH