How microsporidia evolve

Genes evolve rapidly but genomes don't, suggesting that space constraints play a role

Written byCathy Holding
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Genomes within a group of eukaryotic obligate intracellular parasites—the microsporidia—are changing very slowly, even as the genes within them are evolving at a "strikingly high" rate, according to a study in the latest edition of Current Biology. The evolution of eukaryotic genomes usually correlates with the rate of sequence evolution, but the results of this study show that genomes do not necessary evolve in a clock-like fashion, say the authors.

Patrick Keeling at the University of British Columbia and colleagues randomly sequenced 685,000 base pairs of the microsporidian Antonospora locustae genome. They compared the organization of 183 genes found there with the recently completed genome sequence of the distantly related human parasite Encephalitozoon cuniculi, also a microsporidium. The degree of conservation of gene order between the two species was measured as the percentage of gene couples—pairs of genes adjacent to each other—that were couples in both species.

In over 94 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH