How Skates, Sharks Use Electricity to Sense Prey

Researchers have known for decades that certain fish make use of specialized electrosensory cells, but the precise mechanism of these cells was a mystery until now.

Written byJoshua A. Krisch
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Alcian blue-stained skateUCSF/JULIUS LABSharks, rays, and skates can detect minute fluctuations in electric fields—signals as subtle as a small fish breathing within the vicinity—and rely on specialized electrosensory cells to navigate, and hunt for prey hidden in the sand. But how these elasmobranch fish separate signal from noise has long baffled scientists. In an environment full of tiny electrical impulses, how does the skate home in on prey?

In a study published this week (March 6) in Nature, researchers at the University of California, San Francisco (UCSF), have analyzed the electrosensory cells of the little skate (Leucoraja erinacea). They found that voltage-gated calcium channels within these cells appear to work in concert with calcium-activated potassium channels, both specifically tuned in the little skate to pick up on weak electrical signals.

“We have elucidated a molecular basis for electrosensation, at least in the little skate, which accounts for this unusual and highly sensitive mechanism for detecting electrical fields,” said coauthor Nicholas Bellono, a postdoc at USCF. “How general it is, we don’t know. But this is really the first instance in which we’ve been able to drill down and ask what molecules could be ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH