How yeasts evolve

Publication of four more genomes confirm disputed whole genome duplication theory

Written byCathy Holding
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The publication in Nature this week of four yeast genomic sequences seems to have confirmed the controversial idea, introduced in 1997, that whole genome duplication occurred in Saccharomyces cerevisiae.

The very high-coverage sequences—with virtually no gaps—of four species of yeast reveal evidence of tandem gene duplication, segmental duplication (coduplication of tens to hundreds of genes), and whole genome duplication, said study coauthor Giles Fischer, who worked with Bernard Dujon and others at the Centre Nationale de la Recherche Scientifique in France. "One of the major forces that has driven evolution is gene duplication followed by gene loss," Fischer said, "but we did not find only one single mechanism of gene duplication, we found three."

"During the last 2 or 3 years, about 10 novel yeast sequences have been completed, and now the comparison of these sequences has brought one conclusion which is very clear," said André Goffeau, a professor at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery