How yeasts evolve

Publication of four more genomes confirm disputed whole genome duplication theory

Written byCathy Holding
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The publication in Nature this week of four yeast genomic sequences seems to have confirmed the controversial idea, introduced in 1997, that whole genome duplication occurred in Saccharomyces cerevisiae.

The very high-coverage sequences—with virtually no gaps—of four species of yeast reveal evidence of tandem gene duplication, segmental duplication (coduplication of tens to hundreds of genes), and whole genome duplication, said study coauthor Giles Fischer, who worked with Bernard Dujon and others at the Centre Nationale de la Recherche Scientifique in France. "One of the major forces that has driven evolution is gene duplication followed by gene loss," Fischer said, "but we did not find only one single mechanism of gene duplication, we found three."

"During the last 2 or 3 years, about 10 novel yeast sequences have been completed, and now the comparison of these sequences has brought one conclusion which is very clear," said André Goffeau, a professor at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH