In Evolution's Garden

Raising one evolutionary question after another, Brandon Gaut has harvested a crop of novel findings about how plant genomes evolve.

Written byMegan Scudellari
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

BRANDON S. GAUT
Professor, Ecology & Evolutionary Biology
School of Biological Sciences
University of California, Irvine
© MATT KALINOWSKI
Brandon Gaut loved genetics, but he did not like experimenting with mice. An undergraduate at the University of California, Berkeley, in the early 1980s, Gaut worked in a molecular immunology lab studying mouse histocompatibility complexes, which required sacrificing and grinding up his subjects to isolate their DNA. “I just wasn’t into that,” says Gaut. “So I thought, ‘What can I study where I don’t have to feel bad?’ And I decided I wouldn’t feel bad if I cut up a plant.”

That decision catapulted Gaut into the vegetable kingdom and onto his ultimate career path. In 1988, he joined the lab of plant geneticist Michael Clegg at the University of California, Riverside, just as the DNA-amplifying technology of PCR was opening up the field of genetics to large, systematic studies. “It was an exciting time to be in the lab, because we were sequencing genes from all kinds of different plant species,” says Gaut. As a graduate student with Clegg, Gaut compiled DNA sequence data from plant chloroplasts to test an evolutionary hypothesis: the possibility that mutations occur in a species’ genome at a regular pace through time. Gaut showed that there is indeed a molecular clock in plants, and its pace is linked to their ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH