Infographic: Evolving Virulence

Tracking the myxoma virus in the wild rabbit populations of Australia has yielded insight into how pathogens and their hosts evolve.

Written byAndrew F. Read and Peter J. Kerr
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

When a pathogen jumps species, it is often highly lethal in its new host. But a quick kill does not make for continued transmission; the host must survive long enough to pass the pathogen on to additional victims. Thus, under natural conditions, a newly emergent, highly lethal pathogen that kills very rapidly is expected to evolve lower virulence. At the same time, however, the host species is evolving resistance to the infection, which then provides an environment for increasing pathogen virulence. Could humans be creating a similar environment by vaccinating or breeding our farm animals to resist disease?

Wild rabbit populations in Australia declined dramatically in the early 1950s after the release of the myxoma virus, which caused a fatal disease called myxomatosis. Slowly, the populations started to rebound, though they never fully recovered.

To track the myxoma virus (MYXV) as it devastated the invasive rabbit populations of Australia, researchers conducted what are known as common garden experiments, testing the effects of the evolving viral strains on laboratory rabbits, as well as the effects of a standard virus on different samples of rabbits in the wild over time.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH