Infographic: Getting Synapses Ready to Fire

A new study reveals more about the role of specialized Schwann cells at junctions between neurons and muscle cells.

Written byAshley Yeager
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

© KIMBERLY BATTISTA

After stimulation with an action potential (1), the synaptic terminal of a motor neuron releases acetylcholine and ATP. (2) Acetylcholine activates receptors in the muscle, which spurs voltage-gated sodium channels to open, triggering an action potential in the muscle, which contracts. At the same time, ATP or ADP stimulates P2Y1 receptors (3), which causes calcium ions to be released from the endoplasmic reticulum of the terminal/perisynaptic Schwann cell (TPSC) (4). In response, perisynaptic potassium ions (K+) produced by the muscle and neuronal cells move into the TPSC (5). Regulation of perisynaptic potassium ions by TPSCs is thought to reduce the ions’ ability to inactivate voltage-gated sodium channels during repeated firing, thus reducing muscle fatigue.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform