Infographic: What a Trip

Researchers took a mind-bending trip to understand the connections between psychedelic compounds produced by fungi, plants, and humans.

Written byIris Kulbatski, PhD
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Humans have consumed hallucinogenic fungi and plants for thousands of years. Many of these compounds share a common chemical structure with one another and with neurotransmitters widely produced by the human body, such as serotonin. Classic examples are psilocybin, which is synthesized by certain species of fungi, and N,N-Dimethyltryptamine (DMT), which is produced by some plants. The basic chemical structure of DMT is embedded in other psychedelics, including psilocybin.

Chemical structures of DMT, Psilocybin, Serotonin
MODIFIED FROM © ISTOCK.COM, Olesia Lapshina, Eva Almqvist, bestdesigns, Shaiith, designed by Erin Lemieux

The human body also produces DMT. Endogenous psychedelics may perform the following physiological roles:

  • Protect the brain from hypoxic injury
  • Act as neurotransmitters
  • Play a role in an endogenous antidepression system, much like the endogenous opioid system acts against pain

Brain and mushroom illustration
MODIFIED FROM © ISTOCK.COM, Eva Almqvist, bestdesigns, designed by Erin Lemieux
Glowing mushroom on bark
MODIFIED FROM © ISTOCK.COM, bestdesigns, Shaiith, designed by Erin Lemieux

Fungi serve as the digestive and nervous systems
of the forest floor. Their sprawling subterranean mycelia decompose organic detritus into usable nutrients. Mycelia also communicate with soil microorganisms and the root systems of plants and trees. They sense and integrate information using electrical signals and some of the same neurotransmitters as in the human brain and gut.


Read the full story.

Related Topics

Meet the Author

  • Iris Kulbatski, PhD

    Iris, a neuroscientist by training and word surgeon by trade, is an associate science editor with The Scientist's Creative Services Team. Her work has appeared in various online and print publications, including Discover Magazine, Medgadget, National Post, The Toronto Star and others. She holds a PhD in Medical Science and a Certificate in Creative Writing from the University of Toronto. Her left and right brain converse on a regular basis. Once in a while, they collaborate.

    View Full Profile

Published In

<em>The Scientist </em>Fall 2023 cover
Fall 2023

Defying Dogma

To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.

Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies