Infographic: Synthetases and the Evolution of Circulatory Systems

Aminoacyl tRNA synthetases picked up new protein domains that participate in vasculature formation around the same time that organisms evolved key adaptations in the circulatory system.

Written byAmber Dance
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

ABOVE: © THOM GRAVES

Aminoacyl-tRNA synthetases play a fundamental role in protein translation, linking transfer RNAs to their cognate amino acids. But in the hundreds of millions of years that they’ve existed, these synthetases (AARSs) have picked up several side jobs. One of these is to manage the development of vertebrate vasculature.

Multiple AARSs play roles in the development of the vertebrate circulatory system. During development, the serine enzyme SerRS downregulates the expression of vascular endothelial growth factor A (VEGF-A), preventing over-vascularization.

In addition, a combo synthetase for glutamic acid and proline, GluProRS, links up with other proteins to form the interferon-γ activated inhibitor of translation (GAIT) complex to block VEGF-A translation.

A piece of the tryptophan synthetase TrpRS also contributes to dampening angiogenesis by binding and blocking VE-cadherin receptors on endothelial cells so they can’t link together to form blood vessel lining.

Meanwhile, a fragment of the tyrosine synthetase ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

June 2020

An Infant's Bounty

Babies amass microbes that can pave the way to a healthy life

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies