IsoPlexis Enables Discovery of New Cell Types to Accelerate Cancer Immunology

Cellular functional heterogeneity leads to differences in patient response and disease progression. IsoPlexis’ single-cell functional proteomics allows cells to be characterized based on function, accelerating therapeutic development by revealing new phenotypes that specifically correlate to individual disease or response states.

Written byIsoPlexis
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Ahuman cell map is vital information for researchers designing immunotherapies. To create these maps, scientists use techniques such as flow cytometry and RNA sequencing to characterize immune cells based on their physical properties. However, researchers have identified numerous cells with identical surface marker phenotypes that show vast functional diversity, highlighting a gap between the information provided by these traditional techniques and the ability to characterize cell function.

Immune Therapy Advancement with IsoPlexis "Functional Phenotyping"

IsoPlexis’ single-cell functional proteomics platform fills this gap by providing a more complete picture of how individual cell functionality provides critical information missing from genotypes and marker expression through “functional phenotyping.” The platform can identify functional differences in phenotypically identical cells and characterize and measure cytokine secretion in single cells. This allows scientists to uncover unique polyfunctional cellular subsets that can produce multiple cytokines simultaneously. This technology has advanced cancer immunology research and development of immune ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery