Itch Neurons in Mouse Spinal Cords Can Sense Pain

Neurons in the spinal cord thought to be itch-specific also act as a braking mechanism for intense pain, scientists show.

Written byDiana Kwon
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Fluorescently stained murine dorsal root ganglion neurons in the skin (pain-sensing neurons in red, itch-sensing neurons in purple and yellow)XINZHONG DONG

Neuroscientists have long debated how itch and pain overlap in the nervous system. Although itch was once thought to arise from the same neurons that generate pain, later observations disputing this theory led many to believe these sensations had distinct neural circuits. In a study published today (February 22) in Neuron, researchers report that a subset of “itch-specific” nerve cells in the murine spinal cord are also involved in sensing pain, bringing the specificity theory into question.

“We were surprised that contrary to what the field believes, neurons [in the spinal cord] coded for both pain and itch sensations,” coauthor Shuhao Sun, a neuroscience graduate student at Johns Hopkins University, told The Scientist. “[This] means there can be some crosstalk between these two sensations in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform