© STEVE CRAFTIn 2011, at the Fifth International Meeting on Synthetic Biology in Stanford, California, Karmella Haynes arrived at the designated spot to display her poster. Rather than standing idly by, however, she set the board on an easel, whipped out a paintbrush, and turned science into art. Visitors stopped to watch as her experiments came alive. Red and yellow cells seemed to float off the poster and hover above her data. “My crazy artist side came out,” says the synthetic biologist, now an assistant professor at Arizona State University (ASU).
METHODS: As a kid growing up in St. Louis, Missouri, Haynes spent a lot of time painting and problem solving. She loved Legos. In high school, math excited her most of all, until she learned about DNA. The idea of “letters strung together to make a person a person—that was the first thing that blew my mind,” she says. Then, she learned about Punnett squares—genetics problems that could be solved mathematically—solidifying her choice to pursue biology.
Haynes went to Florida A&M for her undergraduate degree and spent summers working in a lab at MIT. For graduate school she returned to St. Louis, where she joined the Washington University lab of Sally Elgin to study how chromatin packaging regulates gene expression in Drosophila. They found that a transposable element involved in the silencing of genes by heterochromatin formation is a target of RNA interference.1
By the time she completed her PhD in 2006, Haynes was ready for something new. Without a research focus in mind, she headed to Davidson College in North Carolina for a teaching and research postdoc, and there she was introduced to synthetic biology. As part of an International Genetically Engineered Machine (iGEM) competition, she guided a group of ...