Katie Kindt's Quest to Understand Hair Cells

Acting Chief, Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders. Age: 38

Written byKaren Zusi
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

NIH/NIDCD As soon as she started her first real science class in seventh grade, Katie Kindt was hooked on genetics. “There was always something about genetics that made sense to me,” she recalls. “It linked the unknown in the world to something that we could follow.”

Kindt began doing research as an undergraduate at the University of Wisconsin–Eau Claire in the late 1990s, earning her bachelor’s in molecular biology and biochemistry. In graduate school at the University of California, San Diego (UCSD), she discovered a passion for neuroscience during her lab rotations. “I’ve actually never taken a neuroscience class,” Kindt says, but she completed her PhD studying mechanosensation in Caenorhabditis elegans under neuroscientist William Schafer.

In Schafer’s lab, Kindt combined genetics with microscopy to study neuron formation and function, observing neural migration in real time. She discovered that dopamine modulates the response to touch in C. elegans, and that when the worms lack a D1-like dopamine receptor, their mechanoreceptors are less sensitive.1 Kindt also demonstrated that TRPA-1, a member of the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH