Learning to Use Brain-Computer Interfaces

Controlling computers with the mind and learning motor skills rely on a similar set of brain regions.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIPEDIA, JOSHUA FURMANUsing sensors that detect brain activity, people can now move virtual cursors, remote-controlled helicopters, and robotic arms, just by thinking. These brain-computer interfaces (BCIs) do not involve any actual movement on a user’s part, and can even benefit paralyzed or locked-in patients for whom movement is impossible.

But new research from the University of Washington in Seattle suggests that we learn to use BCIs in the same way that we learn other motor skills, like riding a bicycle or throwing a ball. At first, it takes deliberate conscious effort and involves a network of many different brain regions. As people practice, however, the tasks become easier and almost automatic, and the network becomes much less active.

In this study, published today (10 June) in PNAS, volunteers used a BCI to move an on-screen cursor. But lead scientist Jeremiah Wander says the results will be useful in training people to use more complex BCIs, like those that control realistic artificial limbs. “The learning burden on the user is so much greater than it ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies