Leitz Inverted Microscope, Circa 1958

Credit: COURTESY OF TERRY SHARRER" /> Credit: COURTESY OF TERRY SHARRER When Leonard Hayflick began his cell culture work at the Wistar Institute in the 1950s, the field was facing a nagging problem. Culture flasks were so big, that microscope objective lenses couldn't come reasonably close to the subject. Hayflick told his Leitz sales representative about the problem, and the sales rep returned with an inverted chemist's microscope popular among crystallographers. With slight modifi

Written byTerry Sharrer
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

When Leonard Hayflick began his cell culture work at the Wistar Institute in the 1950s, the field was facing a nagging problem. Culture flasks were so big, that microscope objective lenses couldn't come reasonably close to the subject. Hayflick told his Leitz sales representative about the problem, and the sales rep returned with an inverted chemist's microscope popular among crystallographers. With slight modification, it became a workhorse for cell culture work.

Hayflick, now professor of anatomy at the University of California, San Francisco, used the microscope for three major career achievements: the discovery of Mycoplasma pneumoniae,1 the determination that normal human diploid cells undergo a limited number of doublings,2 and the development of a vaccine-producing cell strain, "WI-38."3

By isolating Mycoplasma, Hayflick advanced the sorting out of bacterial and viral pathogens for pneumonia and influenza, which together had been the leading cause of death in the United States before 1950.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo