Leitz Inverted Microscope, Circa 1958

Credit: COURTESY OF TERRY SHARRER" /> Credit: COURTESY OF TERRY SHARRER When Leonard Hayflick began his cell culture work at the Wistar Institute in the 1950s, the field was facing a nagging problem. Culture flasks were so big, that microscope objective lenses couldn't come reasonably close to the subject. Hayflick told his Leitz sales representative about the problem, and the sales rep returned with an inverted chemist's microscope popular among crystallographers. With slight modifi

Written byTerry Sharrer
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

When Leonard Hayflick began his cell culture work at the Wistar Institute in the 1950s, the field was facing a nagging problem. Culture flasks were so big, that microscope objective lenses couldn't come reasonably close to the subject. Hayflick told his Leitz sales representative about the problem, and the sales rep returned with an inverted chemist's microscope popular among crystallographers. With slight modification, it became a workhorse for cell culture work.

Hayflick, now professor of anatomy at the University of California, San Francisco, used the microscope for three major career achievements: the discovery of Mycoplasma pneumoniae,1 the determination that normal human diploid cells undergo a limited number of doublings,2 and the development of a vaccine-producing cell strain, "WI-38."3

By isolating Mycoplasma, Hayflick advanced the sorting out of bacterial and viral pathogens for pneumonia and influenza, which together had been the leading cause of death in the United States before 1950.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel