Let it flow

Innovative solutions with small-scale microfluidics.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Microfluidics has so far been used in mostly large-scale, automated pharma and biotech projects, such as nucleic acid and protein separation. Miniaturizing fluid flow to the micrometer-to-millimeter scale offers plenty of advantages for studying cells and small organisms. Biologic-scale microfluidic devices can mimic many in vivo situations, such as laminar blood flow through a capillary or the three-dimensional structures that culture plates can't capture. Such systems can also help researchers to use scarce primary cells and expensive reagents more efficiently.

Already, at least two companies, Cellix and Agilent, offer systems for specific cellular applications, and others are working on prototypes. Their price tags (about $100,000 or more), though, put them out of the reach of most academic labs. So, researchers are starting to collaborate with companies or academic engineers, or are bringing engineers into their own labs, to design smart, small-scale solutions for cellular studies. It's no simple task, however. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Josh P. Roberts

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Discover a serum-free way to produce dendritic cells and macrophages for cell therapy applications.

Optimizing In Vitro Production of Monocyte-Derived Dendritic Cells and Macrophages

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with Lipid Nanoparticles

Thermo Fisher Logo