Light on the Brain

Researchers find that photoreceptors expressed in zebrafish hypothalamus contribute to light-dependent behavior.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Zebrafish larvae without eyes or pineal glands can still respond to light using photopigments located deep within their brains. Published today (September 20) in Current Biology, the findings are the first to link opsins, photoreceptors located in the hypothalamus and other brain areas, to increased swimming in response to darkness, a behavior researchers hypothesize may help the fish move toward better-lit environments.

“[It’s a] strong demonstration that opsin-dependent photoreceptors in deep brain areas affect behaviors,” said Samer Hattar, who studies light reception in mammals at Johns Hopkins University but did not participate in the research.

Photoreceptors in eyes enable vision, and photoreceptors in the pineal gland, a small endocrine gland located in the center of the vertebrate brain, regulate circadian rhythms. But photoreceptors are also found in other brain areas of both invertebrates and vertebrate lineages. The function of these extraocular photoreceptors has been best studied in birds, where they ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems