Long-Lived Immune Memories

Two types of memory T cells can preserve immunological memories for more than a decade, a study shows.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Scanning electron microscope image of a human lymphocyteWIKIMEDIA, NCIFollowing genetically marked donor memory T cells infused into hematopoietic stem cell transplantation patients, a team led by researchers at the University Vita-Salute San Raffaele in Milan, Italy, found that two types of less-differentiated memory T cells can persist for up to 14 years. The team’s results, published today (December 9) in Science Translational Medicine, demonstrate that the survival of these immune cells depends on the type of memory T cells initially introduced into patients, and whether these cells continue to encounter antigens over time.

“This was a really elegant and thorough study in people confirming some of what we already knew from mouse studies,” said immunologist Lewis Lanier of the University of California, San Francisco, who was not involved in the work.

“This is one of the most thorough studies using diverse clonal tracking technologies to analyze the fate of individual memory T cells in humans,” said Luca Gattinoni, a transplantation and immunology expert at the National Cancer Institute in Bethesda, Maryland.

Part of the adaptive immune system, memory T cells are generated from naive T cells; these specialized immune cells monitor reappearing antigens. Because it is difficult to longitudinally track antigen-specific clones in patients, most of what was previously known about memory immune cells had been found in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery