Looking for Latent HIV

Sequencing HIV integration sites suggests that clonally expanded T-cell populations may not be the main source of latent virus.

Written byJenny Rood
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

BUTTING IN: HIV integrates genetic material into the genome of a host’s memory T cells, frequently at sites of so-called Alu repeats (above, left panel). Although these cells are suspected of harboring intact, latent viral DNA, researchers have found that clones of an infected T cell have short, dysfunctional integrations and thus likely do not compose the HIV reservoir that can replicate if a patient stops antiretroviral therapy (above, right panel).© KIMBERLY BATTISTA

The paper
L.B. Cohn et al., “HIV-1 integration landscape during latent and active infection,” Cell, 160:420-32, 2015.

Antiretroviral treatments have transformed HIV infection from a death sentence to a manageable, though lifelong, condition. But remove the drugs that prevent the virus from replicating, and the infection comes roaring back. Although scientists have long known that somewhere in the bodies of HIV-positive people a latent reservoir of virus lies in wait, ready to replicate when conditions are right, researchers have struggled to locate it. One of the more popular latent-reservoir hypotheses is that the virus integrates into the genome of a memory T cell. That cell then divides many times, creating clones of the original integration that serve as an on-demand virus-making factory.

To test this ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform