Making the Rounds

Circular RNA biogenesis occurs when RNA fragments are bent into closed loops of one or more exons and/or introns.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Circular RNAs often form as the pre-mRNA molecule is processed into its final transcript via splicing, in which introns are removed and exons are linked together. Most circular RNAs are thought to be formed by a process called backsplicing, which joins one end of an exon to the other, or to an upstream exon, forming a circle. Researchers have recently published several models—not all of them necessarily mutually exclusive—to explain how different parts of the RNA molecule are brought into close proximity, encouraging backsplicing and turning a linear sequence into circular RNA.

THE SCIENTIST STAFFTHE SCIENTIST STAFFIn a general backsplicing model, proteins assemble to form the spliceosome that processes transcribed RNA. But instead of splicing exons together in a linear sequence, they join the end of one exon to the beginning of the same exon or to an upstream exon. Below are three mechanisms that can drive this backsplicing

INTRON-PAIRING-DRIVEN CIRCULARIZATION

Complementary base pairs formed between long intronic sequences on different parts of the transcript bring together different splice sites on an RNA molecule, promoting backsplicing.

LARIAT-DRIVEN CIRCULARIZATION

Splicing proteins “skip” some ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies