Maternal Antibodies Linked to Autism

Some children with autism are born to mothers carrying antibodies that bind to proteins involved in brain development.

Written byEd Yong
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

WIKIPEDIA, KEN HAMMOND (USDA)In 2008, Judy van de Water from the University of California, Davis, discovered a group of autoantibodies—those that trigger immune responses against the body’s own molecules—that are especially common in mothers of children with autism. Now, her team has identified what these antibodies bind to: six proteins involved in varied aspects of brain development. By crossing the placenta and affecting these proteins in a fetus’s brain, the maternal antibodies could increase the risk of developmental problems in some cases of autism, according to the new research, published today (July 9) in Translational Psychiatry.

“I cannot laud these authors enough,” said Andrew Zimmerman, a neurologist from the Kennedy Krieger Institute, who has also been studying maternal antibodies but was not involved in this study. “Given that, at present, only between 15 and 20 percent of children with autism have known causes—mainly genetic and infectious mechanisms—this will be a major advance.”

Van de Water’s team, led by graduate student Dan Braunschweig, is now using their discovery to develop a test that predicts a child’s risk of developing autism spectrum disorders based on the mother’s antibodies. “It would allow mothers to plan,” said van de Water, by enrolling their children in educational programs that promote social skills from an early age.

The antibody hypothesis would only apply to a quarter of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo