Maximize In Vitro Culture Possibilities

From Redmond, et al., "Perfused transcapillary smooth muscle and endothelial cell co-culture--a novel in vitro model," In Vitro Cellular & Developmental Biology--Animal, Volume 31:601-609. Copyright 1995 by the Society for In Vitro Biology. Reproduced with permission of the copyright owner. The Cellmax™ culture system uses hollow fiber bioreactor technology in applications as diverse as secreted protein production, lymphocyte expansion, and cellular co-cultivation. The concept of

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

From Redmond, et al., "Perfused transcapillary smooth muscle and endothelial cell co-culture--a novel in vitro model," In Vitro Cellular & Developmental Biology--Animal, Volume 31:601-609. Copyright 1995 by the Society for In Vitro Biology. Reproduced with permission of the copyright owner. The Cellmax™ culture system uses hollow fiber bioreactor technology in applications as diverse as secreted protein production, lymphocyte expansion, and cellular co-cultivation. The concept of using artificial capillary beds in a bioreactor chamber fed by a medium perfusion circuit for in vitro cell culture was pioneered in 1972 by Knazek et al. (Science 178:65-67, 1972). The original apparatus supported the growth of human choriocarcinoma cells to tissue-like densities and allowed hormones secreted by the cells to be harvested from the circulating medium without disturbing the cell culture. Almost 20 years after Knazek's original work, Cellco, Inc. (a division of Spectrum Corporation, Laguna Hills, Calif.) commercialized this hollow fiber bioreactor technology ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Linda Raab

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo