Mechanical Forces in the Kidney

By Jef Akst Mechanical Forces in the Kidney Online Extra The renal tubules of the kidney function to reabsorb water, ions, and organic molecules from the filtrate destined to become urine. As it passes through the sections of the tubule, the majority of the fluid and electrolytes are transported back into the plasma, leaving the waste products behind, which pass on to the collecting duct system, the urethra, and out of the body. Importantly, the quantity of

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The renal tubules of the kidney function to reabsorb water, ions, and organic molecules from the filtrate destined to become urine. As it passes through the sections of the tubule, the majority of the fluid and electrolytes are transported back into the plasma, leaving the waste products behind, which pass on to the collecting duct system, the urethra, and out of the body. Importantly, the quantity of fluid flowing through the tubule can vary greatly—up to ten-fold-yet the total amount of reabsorption is remarkably stable. How the tubule senses such dramatic changes in flow has been a "mystery for about 4 decades now," says bioengineer Sheldon Weinbaum of the City College of New York.

Each endothelial cell in the first section of the renal tubules is lined with thousands of densely packed protrusions known as microvilli. For years, scientists believed that the function of these protrusions was simply to increase ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH