Mechanical Forces in the Kidney

By Jef Akst Mechanical Forces in the Kidney Online Extra The renal tubules of the kidney function to reabsorb water, ions, and organic molecules from the filtrate destined to become urine. As it passes through the sections of the tubule, the majority of the fluid and electrolytes are transported back into the plasma, leaving the waste products behind, which pass on to the collecting duct system, the urethra, and out of the body. Importantly, the quantity of

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The renal tubules of the kidney function to reabsorb water, ions, and organic molecules from the filtrate destined to become urine. As it passes through the sections of the tubule, the majority of the fluid and electrolytes are transported back into the plasma, leaving the waste products behind, which pass on to the collecting duct system, the urethra, and out of the body. Importantly, the quantity of fluid flowing through the tubule can vary greatly—up to ten-fold-yet the total amount of reabsorption is remarkably stable. How the tubule senses such dramatic changes in flow has been a "mystery for about 4 decades now," says bioengineer Sheldon Weinbaum of the City College of New York.

Each endothelial cell in the first section of the renal tubules is lined with thousands of densely packed protrusions known as microvilli. For years, scientists believed that the function of these protrusions was simply to increase ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours