Mechanisms of the Munchies

Mouse study investigates the role of cannabinoid type-1 receptors in hunger, olfaction, and food intake.

Written byTracy Vence
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, ALLEN INSTITUTE FOR BRAIN SCIENCEBy increasing odor detection, cannabinoid type-1 (CB1) receptors in the olfactory bulb help mediate feeding behavior in fasted mice, according to a study published in Nature Neuroscience today (February 9). Researchers from the French Institute of Health and Medical Research (INSERM) and elsewhere have uncovered CB1 receptor-dependent mechanisms through which endocannabinoids and exogenous cannabinoids like THC, the active ingredient in marijuana, increase olfaction and subsequent fasting-induced food intake, and suggest that their work points to potential therapeutic targets for feeding behavior-related human diseases like anorexia and obesity.

“The study clearly establishes the relationship of food intake and olfactory processing and implicates the endocannabinoid system as a key player in this signaling pathway,” said Howard University College of Medicine’s Thomas Heinbockel, who has investigated the endocannabinoid system’s functions in the olfactory bulb, but was not involved in the work.

In 2010, INSERM’s Giovanni Marsicano and his colleagues showed that deletion of CB1 from cortical glutamatergic or GABAergic neurons had opposing effects on fasting-induced food intake in mice, implicating the endocannabinoid system in control of feeding behavior. For the present study, the researchers used pharmacological and genetic manipulations as well as an optogenetic approach to investigate connections between sensory input with central processing in the olfactory bulb and subsequent feeding behavior. They found that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH