Microfluidics Within Reach

A programmable, hand-operated microfluidic device could help researchers designing more-accessible diagnostics.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

PLOS ONE, G. KORIR AND M. PRAKASHResearchers at Stanford University have designed a new microfluidic device that is powered by hand crank and programmed by paper punch cards, which they described last week (March 4) in PLOS One. Riffs on the device, based on a design for a children’s music box, should allow researchers to create portable, sturdy microfluidic devices for use in the classroom, as well and for diagnostic testing and environmental monitoring in areas with limited access to electricity and trained personnel.

“This paper is the most clever use of an inexpensive programmable toy to produce useful microfluidic systems at low cost,” Paul Yager, a professor of bioengineering at the University of Washington in Seattle who was not involved in the study, wrote in an e-mail to The Scientist. “This has a lot of potential for teaching and for performing processes at low cost in the developing world.”

Manu Prakash, coauthor of the new paper and an assistant professor of bioengineering at Stanford, said that his team’s device manages to have high-tech capabilities despite its relatively low-tech operational requirements. “The tool has exactly the same specs as any of these other microfluidic technologies that are out there that are all automated and run by computers,” Prakash said.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kate Yandell

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio