Model Liver

By Richard P. Grant Model Liver Stefan Hoehme (3D model of damaged liver lobule) The paper S. Hoehme et al., “Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration,” PNAS, 107:10371-76, 2010. Free F1000 Evaluation The finding Dirk Drasdo at INRIA Paris-Rocquencourt and colleagues have been trying for a number of years to turn experimental information into mathematic

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The paper
S. Hoehme et al., “Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration,” PNAS, 107:10371-76, 2010. Free F1000 Evaluation

The finding
Dirk Drasdo at INRIA Paris-Rocquencourt and colleagues have been trying for a number of years to turn experimental information into mathematical models that help explain how cells form functional tissue. Now they have used high-resolution images and three-dimensional reconstruction to generate an accurate 3-D computational model of liver regeneration, uncovering a previously unknown mechanism in the process.

The puzzle Starting with mouse livers treated with carbon tetrachloride (which models acetaminophen damage), Drasdo’s team built computational models of how liver lobules regenerate after damage. Their early models, which factored in increased cell proliferation and direction of cell migration, failed to describe how cells colonized and repaired damaged areas. On a hunch, they programmed dividing hepatocytes to line up along ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Richard P. Grant

    This person does not yet have a bio.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit