More Lab-Made Nucleotides

Artificial bases that act like the real deal can be designed to bind specifically to tumor cells.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

PIXABAY, SKEEZESynthetic biologists have created two artificial nucleotide bases that pair up with one another and, unlike previous iterations of lab-made DNA, can incorporate into genetic sequences to form a properly structured double helix. The team has also used these artificial nucleotides to engineer genetic sequences that stick to cancerous, but not normal, cells.

“This is neat because they evolved selective binders to cancer cells,” Floyd Romesberg of the Scripps Research Institute in La Jolla, California, told New Scientist. “If you can selectively bind to cancer cells, you can imagine selectively killing them.”

Steven Benner of the Foundation for Applied Molecular Evolution in Gainesville, Florida, and colleagues expanded the genetic alphabet with two bases, called Z and P. In one paper, published May 11 in the Journal of the American Chemical Society, the team provided structural evidence that multiple adjacent pairs of Z:P could form a normal geometric configuration.

Then, in a second paper published May 12 with additional colleagues, Benner created a library of genetic sequences with a random string of nucleotides that included the Z and P ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies