More reprogramming clues (maybe)

One of the biggest holy grails in biology involves finding a means to generate pluripotent and infinitely replicating stem cells without generating an embryo. One Japanese team presented some potent clues last night at the linkurl:Keystone conference;http://www.keystonesymposia.org/Meetings/ViewMeetings.cfm?MeetingID=786 on stem cell biology -- but stem cell researchers will need a few more bread crumbs before they can put this potentially exciting information to use. linkurl:Shinya Yamanaka;ht

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share
One of the biggest holy grails in biology involves finding a means to generate pluripotent and infinitely replicating stem cells without generating an embryo. One Japanese team presented some potent clues last night at the linkurl:Keystone conference;http://www.keystonesymposia.org/Meetings/ViewMeetings.cfm?MeetingID=786 on stem cell biology -- but stem cell researchers will need a few more bread crumbs before they can put this potentially exciting information to use. linkurl:Shinya Yamanaka;http://www.frontier.kyoto-u.ac.jp/rc02/kyojuE.html from Kyoto University and the Japan Science and Technology Agency presented a series of experiments designed to identify key reprogramming factors that convert a somatic cell into an embryonic one. Starting from a list of 100 proto-oncogenes and embryonic stem (ES) cell associated transcripts, or ECATs, he and his co-author winnowed the list to 24, then 10, then 4; all, when combined, appeared to induce pluripotency in murine embryonic MEF cells. (Below four factors, the authors were unable to obtain seemingly viable colonies.) The four factors also successfully reprogrammed fibroblasts from adult mice, and the authors plan to continue their work in human fibroblasts. This all sounded very exciting, until Yamanaka concluded his talk without naming the four seemingly crucial factors for reprogramming a somatic cell. A series of probing questions from the audience revealed a few details -- most are likely present in the oocyte, and may change the length of the cell cycle. He admitted that one factor is Oct4, which plays an important role in the maintenance of pluripotency, and is a key actor in much of the research presented during the conference. "I'm not brave enough to tell the other three," Yamanaka concluded.
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Alison McCook

    This person does not yet have a bio.
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis