Moss Harbors Foreign Genes

Genes from fungi, bacteria, and viruses may have helped mosses and other plants to colonize the land.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Wikipedia, PirexLand plants emerged around half a billion years ago, having evolved from green aquatic algae. Today, a representative of these early land-dwelling species—a moss—hints that genes from other kingdoms of life may have helped the ancient colonizers flourish on land.

Jinling Huang from East Carolina University studied the genome of the moss Physcomitrella patens and found 128 genes that originated in fungi, bacteria, and viruses, not other plants. The results, published today (23 October) in Nature Communications, suggest that much of P. patens’ genetic material resulted from horizontal gene transfer (HGT), or the movement of genes between species. This phenomenon is common among bacteria and other prokaryotes, but thought to be rare and relatively unimportant in eukaryotes like animals and plants.

“I believe that HGT is more widespread in eukaryotes than generally believed,” said Michael Syvanen, a microbiologist from the University of California, Davis, who was not involved in the study. “Hopefully, this current paper will shake things up a bit and lead people to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research