Mutated Flu May Dodge Vaccine Protection

About half of the H3N2 influenza samples tested in the United States encode altered antigens from the strain used to produce this year’s vaccine.

Written byMolly Sharlach
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

A 3-D print of an influenza virus, showing the surface antigens hemagglutinin (blue) and neuraminidase (red)FLICKR, NIAID

While widespread vaccination is still the best defense against the influenza virus, the US Centers for Disease Control and Prevention (CDC) warned last week (December 4) that many of this year’s circulating strains are different from the ones used to formulate the annual flu vaccine.

So far this season, more than 90 percent of the reported flu cases in the US are of the H3N2 subtype, and 52 percent of the samples tested have mutations in antigen-encoding genes compared to the sample used to produce the annual vaccine.

“They’re different enough that we’re concerned that protection from vaccination against the drifted H3N2 viruses may be lower than we usually see,” CDC Director Thomas Frieden said. “These changes can signal that the immune response provided by ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH