Nascent Neurons Break Free

Neuronal precursors are partially dismantled during early development before they find their fate.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Differentiating neurons in the embryonic spinal cord abscise their apical tips to detach from the ventricular surface.COURTESY OF RAMAN DASIn the early stages of vertebrate development, the precursors to neurons must leave their nursery at the apical surface of the neural tube and navigate to their new home in the growing nervous system where they will become differentiated neurons. Researchers report today (January 9) in Science on a newly identified means of accomplishing this detachment, one that involves cells lopping off a portion of themselves and leaving it behind—a procedure the group dubbed “apical abscission.”

“Certainly no one had seen this apical abscission before to my knowledge, and it’s a new kind of abscission process,” said William Harris, a neuroscientist at the University of Cambridge who did not participate in the study.

Harris said the process of apical abscission accomplishes two things: it releases the cell from the apical side of the neural tube, and it leaves behind the proliferative signals associated with the primary cilium. “Knocking off just this tiny part of the cell is a cool way to get these two issues sorted at the same time,” Harris told The Scientist.

Kate Storey of the University of Dundee in the U.K. and her colleague used time-lapse microscopy to observe neurogenesis in slices of embryonic chicken spinal cords. The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
An image of a DNA sequencing spectrum with a radial blur filter applied.

A Comprehensive Guide to Next-Generation Sequencing

Integra Logo
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel