New Amines on the Block

Scientists searching for protein-protein interactions generally must look for them in vitro.

Written byLaura Hrastar
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Scientists searching for protein-protein interactions generally must look for them in vitro. But available techniques, such as chemical crosslinking and coimmunoprecipitation, are prone to false-positive and false-negative results. Cell lysis procedures, for instance, may bring into contact proteins that normally are compartmentalized in the cell, while wash procedures can dissociate fragile intermolecular interactions. And uncontrolled chemical methods can make even the most solitary polypeptide seem promiscuous.

Now, a team of researchers at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany, has created a new approach that may make detecting protein interactions easier, and more reliable in living mammalian cells.1

The new research builds on pioneering work at the Scripps Research Institute in San Diego, where Peter Schultz developed a method for modifying tRNAs to selectively incorporate non-natural amino acids into a single position within a protein. But Schultz's method is time consuming and requires extensive ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies