New and Improved Organoids Better Resemble Human Brains

More-sophisticated structures lend new insight into how Zika attacks the developing brain.

Written byAggie Mika
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Brain region-specific organoids X. QIAN ET AL., CELL., 165:1238-54, 2016To better recapitulate the intricacies of the human brain, scientists are growing up organoids that model discrete brain structures. In a presentation at the Society for Neuroscience meeting taking place this week (November 11-15) in Washington, D.C., neuroscientist Guo-li Ming of the University of Pennsylvania says her team’s forebrain organoids, which mimic certain complex features of the developing human brain, can help researchers understand the mechanisms behind Zika’s debilitating effects.

It’s difficult to control the growth of whole brain organoids, says Ming in an interview with The Scientist, and researchers end up with structures that are highly variable and contain a randomly distributed mish-mash of brain regions. Instead, Ming and her team were able to grow forebrains using custom-made bioreactors and a cocktail of specialized growth signals.

The researchers’ forebrain organoids simulate human cortical development “from conception to the first trimester,” says Ming, and harbor other human-specific traits—including a cortex composed of distinct layers as well as the presence of radial glial cells within a region resembling the evolutionarily recent outer subventricular zone.

When the team exposed these more-sophisticated structures to Zika, the virus preferred to infect neural stem cells over mature neurons, confirming earlier ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research