Brain region-specific organoids X. QIAN ET AL., CELL., 165:1238-54, 2016To better recapitulate the intricacies of the human brain, scientists are growing up organoids that model discrete brain structures. In a presentation at the Society for Neuroscience meeting taking place this week (November 11-15) in Washington, D.C., neuroscientist Guo-li Ming of the University of Pennsylvania says her team’s forebrain organoids, which mimic certain complex features of the developing human brain, can help researchers understand the mechanisms behind Zika’s debilitating effects.
It’s difficult to control the growth of whole brain organoids, says Ming in an interview with The Scientist, and researchers end up with structures that are highly variable and contain a randomly distributed mish-mash of brain regions. Instead, Ming and her team were able to grow forebrains using custom-made bioreactors and a cocktail of specialized growth signals.
The researchers’ forebrain organoids simulate human cortical development “from conception to the first trimester,” says Ming, and harbor other human-specific traits—including a cortex composed of distinct layers as well as the presence of radial glial cells within a region resembling the evolutionarily recent outer subventricular zone.
When the team exposed these more-sophisticated structures to Zika, the virus preferred to infect neural stem cells over mature neurons, confirming earlier ...