New Skeletal Muscle Differentiation kit

Scalable Protocol to Differentiate Skeletal Muscle Cells from Stem Cells

Written byAMSbio
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

AMSBIO announces the availability of the world's first kit to differentiate human pluripotent stem cells into functional myotubes. The new kit utilizes a highly efficient media based protocol to produce skeletal muscle cells from stem cells in a simple, scalable manner.

The potential to differentiate stem cells into specific cell types is revolutionizing life sciences, from new methods of studying developmental biology and novel approaches to producing accurate disease models to techniques to help drug discovery and toxicity testing.

Until recently methods of studying muscular disease and potential therapies were dependent on invasive muscle biopsies to produce limited batches of primary cells. Use of primary cells presents challenges, not only in the collection process but also related to inconsistencies in cell growth, behavior and life span, making it difficult to generate reliable experimental models.

The new Skeletal Muscle Differentiation kit offers researchers a unique tool to rapidly differentiate donor stems ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies