Sweet Tooth Gene Tied to Less Body Fat

A study of more than 450,000 people finds a certain genetic variant associated with eating more carbs is linked to a thicker waist and higher blood pressure, but less fat.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ISTOCK, CHAMPJAA variant in the gene for a certain hormone is tied to people eating more carbs. Yet a new study of 451,000 people finds that the allele doesn’t universally mean poorer health. Researchers reported yesterday (April 10) in Cell Reports that those with the sweet-tooth variant actually have lower body fat than others, and no higher risk for type 2 diabetes. They did, however, find a link between the allele and high blood pressure and a thicker waistline.

“This goes against the current perception that eating sugar is bad for health. It may reduce body fat because the same allele also results in a lower consumption of protein and fat in the diet,” study coauthor Timothy Frayling, a molecular geneticist at the University of Exeter Medical School in the U.K., says in a press release. “But whilst this version of the gene lowers body fat, it also redistributes fat to the upper body, where it’s more likely to cause harm, including higher blood pressure.”

The gene of interest here is FGF21, which encodes fibroblast growth factor 21, a hormone involved in alcohol and sugar consumption and insulin sensitization. The authors note that it’s a target of weight loss interventions.

People with a particular ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control