The Promise of mRNA Vaccines

Long before Moderna’s and Pfizer’s COVID-19 shots, scientists had been considering the use of genetically encoded vaccines in the fight against infectious diseases, cancer, and more.

Written byDiana Kwon
| 5 min read
mrna vaccine covid-19 astrazeneca pfizer biontech moderna coronavirus pandemic sars-cov-2 spike protein

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: © ISTOCK.COM, SERHEII YAKOVLIEV

Earlier this month, the world finally received some good news about COVID-19. Interim results from Phase 3 clinical trials revealed that two vaccine candidates—one from the Pfizer and BioNTech and another from Moderna—were more than 90 percent effective. In addition to sharing what appears to be very high efficacy, the vaccines have something else in common: they are both made with messenger RNA (mRNA).

mRNA vaccines work by providing the genetic code for our cells to produce viral proteins. Once the proteins, which don’t cause disease, are produced, the body launches an immune response against the virus, enabling the person to develop immunity. mRNA can theoretically be used to produce any protein, with the upside that it much simpler to manufacture than the proteins themselves or the inactivated and attenuated versions of viruses typically used in vaccines, making it an appealing technique, says Norbert Pardi, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform